Manual

PaREnNnTranslatorPlugins

Introduction

The PaREnTrandatorPlugins module is a spin-off from the ExCoLib. Check out the full folder from the
svninorder to get it all.

PaRENTranslatorPlugins are stripped down functionality for importing and exporting data into different
formats. It closely orients its functionality around the needs of the PaREn Translator class found in
PaREnDataSources module.

PaREN Translator

The PaREn Trandator class maintains a set of data in a consistent way and makes frequent
manipulations easy. The information stored in the translator are the feature vectors, the names of the
features (name of columns), the labels for each of the vectors and a probability matrix together with its
header description. These are the almost always required data. The trandator can be missing some of
the fields. You can separate them and join them together easily. Translators use the Convert() method to
move between RAM (as NumPy array) and other formats. The other formats are supplied by the
PaRENnTranslatorPlugins.

Unfortunately, not all file formats are capable of representing all of the information needed to restore a
trandator from file. The result is that some formats support importing and exporting at different levels
of fildelity. The plugins know this in advance of course and have flags that indicate, roughly what kind
of capability they have.

PaREnTranslatorPlugins

Installation

Download PaREnTransl atorPlugins (Separated) and invoke
python setup.py install

Thiswill use distutils, in order to make PaREnTrans atorPlugins globally visible. Through this global
visibility you can always invoke:

import PaREnTranslatorPlugins
from PaREnTranslatorPlugins import *

General Description

Available Formats

Currently the following plugins are supported out of the box:

Name Import Export

R None Multiple data, complete
csv Multiple data, complete Multiple data, complete
XML Multiple data, complete Multiple data, complete
MAT Single data, complete Single data, complete
SVM None Single data, restricted

The SVM plugin supports options for specifying which labels are considered +1 and which -1 and
whether the other labels are exported as +0 or not exported.

Classes

The PaREnTrandatorPlugins module consists of several variables and classes that do the job of
exporting and importing. The class, which is instantiated only once is the registry class
Trand atorPlugins. The variable representing the registry is TranslatorPluginRegister.

>>import PaREnTranslatorPlugins
>>PaREnTranslatorPlugins.TranslatorPluginRegister

<PaREnTranslatorPlugins.TranslatorPlugins instance at 0xllee4d0>
The registry provides you with three important methods.

e Import()

e Export()

e PrintAllFormatsinfo()

The Plugin classisthe base class for al plugins. Currently PaREnTranslatorPlugins supports RPlugin,
MATPlugin, SYMPlugin, XMLPlugin and CSVPlugin out of the box.

Functions

There also exist four functions:
e Plugininfo()
e CreateData()

e Import()
e Export()

Basically, these functions expose Trand atorPluginRegister's functions in a short to type way.

Data

The functions use a specific data format in order to communicate with the Trandator. In fact a plugin
can import/export multiple trandators into/from a single file. Therefore the outer data structureis alist.
The inner structure is a dictionary with keywords fixed by convention. These keywords are

e Vectors

e Features

e Labels

e Probabilities
e ClassiDs

Example:

Data = [{ “Vectors”:ArrayWithVecs, “Features”:ListWithNames,
“Labels”:ListWithClassIDs, “Probabilities”:ArrayWithProbabilities,
“ClassIDs”:ListWithHeaderForProbabilities}]

Detailed Description

CLASS TranslatorPlugins

The class TranslatorPluginsisinstatiated only once to an object known as the Trand atorPluginRegister.
Every newly instantiated Plugin uses the Add() method in order to advertise itself. The Remove()
method is never called. Originally the __del_ destructor was supposed to do this, but because of afew
speciatieswith Python __del _ isnever called. Even if it was called, the object would not be freed
from memory.

#

#CLASS TranslatorPlugins

#This class is responsible for handling all the formats registered by the programmer. It maintains the
#record of import-export plugins

#

class TranslatorPlugins :

#

#Class TranslatorPlugins
#CONSTRUCTOR

#

def _ init_ (self):

#
#Class TranslatorPlugins
#DESTRUCTOR

#

def _ del_ (self)

#

#Class TranslatorPlugins

#Add ()

#Search if the plugin is already registered or not. If it is already registered,

#it will generate an error. Otherwise will add the plugin in self.MyRegistered

#Parameter : PluginInfo (Contains information about a plugin)

#

def Add(self, PluginInfo):

#

#Class TranslatorPlugins

#Remove ()

#Removes a plugin from self.MyRegistered.

#Parameter : PluginInfo (Contains information about a plugin)

#

def Remove(self, PluginInfo):

#

#Class TranslatorPlugins

#Import()

#Imports data using a given stream (Stream) from a particular format (Name). If the format
#is not registered it generates an error. If the format is registered but the import is not

#supported a warning is generated by class Plugin.

#Parameter : Name (Name of the format importer)

#Stream : Stream (File name or an object pointing to a file)
#Options : Dictionary with options

#

def Import(self, Name, Stream, Options={}):

#

#Class TranslatorPlugins
#Export ()
#Exports data (Data) using a given stream (Stream) to a particular format (Name). If the

#format is not registered it generates an error. If the format is registered but the export is

#not supported a warning is generated by class Plugin.

#Name : STRING. Name of the format importer

#Stream : Stream (File name or an object pointing to a file)
#Data : LIST OF DICTS (Data to be exported to file)

#

def Export(self, Name, Stream, Data, Options={}):

#

#Class TranslatorPlugins
#PrintAllFormatsInfo()

#Prints the name and availability of Import and Export Capabilities of a format

#

def PrintAllFormatsInfo(self):

The importing and exporting is done via the Import() and Export() methods, respectively:
f = open(“something.csv”, “w”)
TranslatorPluginRegister.Export(“Csv”, £, Data, Options)

f.close()

CLASS Plugin

The Plugin class defines the interface that is understood by the registry. It isvery simple. It only
provides four methods:

e Import()
e ImportOptions()
o Export()
e ExportOptions()

Whenever anew plugin is created, it first must advertise itself: (EXAMPLE)
#

#CLASS RPlugin

#

class RPlugin(Plugin):

#

#CLASS RPlugin
#CONSTRUCTOR

#

def _ init (self):
MyCanImport = Plugin.NoCapability;
MyCanExport = Plugin.MultiCompleteData;
NameOfPlugin = “R”;

Plugin.__init_ (self, NameOfPlugin, MyCanImport, MyCanExport);

#the following codes are to be used for import and export direction:

NoCapability =0; #can't do anything for the direction

MultiCompleteData =1; #can read (write) multiple data sets with all data fields (like XML)
SingleCompleteData = 2; #can read (write) just a single data set with all data fields (like MAT)
MultiRestrictedData = 3; #can read (write) multiple data sets, but not all fields

SingleRestrictedData= 4; #can read (write) only a single data set and not with all fields (like SVM)

In order to make the module really visible, you must create an object of your class. If you added an
additional plugin to the PaREnTrand atorPlugins module, then you should add this object to the
following section:

#
#PLUGIN CREATION

#

_XML = XMLPlugin()
_C8V = CsVPlugin()
_SVM = SVMPlugin();
_MAT = MATPlugin();
RRR = RPlugin();

??? = MyPlugin()

If your plugin is not created in the PaREnTranslatorPlugin module, you must make sure, that your
plugin objectis longlived , sincethe unregistration doesn't work.

Functions
Plugininfo()

Printsalist on the terminal, so that one knows what kind of plugins are available.

CreateData()

Creates alist with asingle dictionary init. The dictionary is given the right keys, so that you don't have
to remember them yourself. All parameters are optional. You supply them, asthey are availbale. Note,
that if you supply Features, you also must support Vectors and that if you support Probabilities, then
you also must provide ClassIDs.

#

#FUNCTION CreateData(Name, Vectors, Labels, Probabilities, ClassIDs)

#RETURNS LIST OF DICTS
#This class packages the parameters into a single dictionary understood by the plugins.

#In order to store more than one translator in the file, you can do the following:

#Data = CreateData(...) + CreateData(...) + ...

#

#Name : OPTIONAL STRING. Name of the translator

#Vectors : OPTIONAL 2D ARRAY. Rows are feature vectors.

#Labels : OPTIONAL LIST. Contains labels for each row

#Probabilitis : OPTIONAL 2D ARRAY. Probability of each feature vector to belong to a specific class
#ClassIDs : MANDATORY TO PROBABILITIES. LIST. Identifies the headers (label) for each column in
Probabilities.

#

def CreateData(Name=None, Vectors=None, Features=None, Labels=None, Probabilities=None,
ClassIDs=None):

Import()

The Import function is a simple way to get data read into your experiment:

Data = PaREnTranslatorPlugins.Import('file.mat');
or
Data = PaREnTranslatorPlugins.Import('file.csv', Options = {...});

if you need to specify some options. This function will only work, when file extension matches the
plugin name!

Export()

The Export function is asimple way to get your data out on the way:
PaREnTranslatorPlugins.Export(“file.xml”, Data)
or

PaREnTranslatorPlugins.Export(“file.xml”, Data, Options = {...})

if you need to specify some auxiliary options. Be aware, that only those data get exported that are
actually supported by the file format, other fields get lost without warning.

Data

Vectors: 2D numpy array

Labels: List where length = height of Vectors

Features: List where length = width if Vectors

Probabilities: 2D numpy array where height = height of Vectors
ClassIDs: List wheren length = width of Probabilities

	Introduction
	PaREn Translator
	PaREnTranslatorPlugins
	Installation
	General Description
	Available Formats
	Classes
	Functions
	Data

	Detailed Description
	CLASS TranslatorPlugins
	CLASS Plugin
	Functions

	Data

